( ISSN 2277 - 9809 (online) ISSN 2348 - 9359 (Print) ) New DOI : 10.32804/IRJMSH

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 53    Submit Your Rating     Cite This   Download        Certificate

AN ANALYSIS OF IMAGE CLASSIFICATION METHODS TO DETECT AGRICULTURE CHANGE DETECTION USING REMOTE SENSING IMAGES

    3 Author(s):  MR.HAREESH B,MR.VASUDEVA,MR. SUNITH KUMAR T

Vol -  14, Issue- 5 ,         Page(s) : 457 - 465  (2023 ) DOI : https://doi.org/10.32804/IRJMSH

Abstract

The change detection for agricultural land requires a given sample's most accurate categorization result. It is common to compare multiple remotely sensed data classification techniques. Several aspects must be considered while selecting a classification algorithm, including the data set, the problem context, and the objective.

[1]   Gómez C, White JC, Wulder MA. Optical remotely sensed time series data for land cover classification: A review. ISPRS J Photogramm Remote Sens. 2016;116:55-72. doi:10.1016/j.isprsjprs.2016.03.008
[2]   Ma L, Li M, Ma X, Cheng L, Du P, Liu Y. A review of supervised object-based land-cover image classification. ISPRS J Photogramm Remote Sens. 2017;130:277-293. doi:10.1016/j.isprsjprs.2017.06.001

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details