1. E. Zitzler and L. Thiele, ‘Multiobjective optimization using evolutionary algorithms - a comparative case study’, in Proc. Intl. Conference on Parallel Problem Solving from Nature (PPSN), pp. 292–304. Springer, (1998).
2. World Business Council for Sustainable Development, ‘Transforming the market: energy efficiency in buildings’, Technical report, WBCSD, (2009).
3. J. Bader and E. Zitzler, ‘Hype: An algorithm for fast hypervolumebased many-objective optimization’, Evolutionary Computation, 19(1), 45–76, (2011).
4. S. Bechikh, L. Ben Said, and K. Gh´edira, ‘Searching for knee regions in multi-objective optimization using mobile reference points’, in Proc. Symposium on Applied Computing (SAC), pp. 1118–1125. ACM, (2010).
5. M. Birattari, T. St¨utzle, L. Paquete, and K. Varrentrapp, ‘A racing algorithm for configuring metaheuristics’, in Proc. Genetic and Evolutionary Computation Conference (GECCO), ed., W.B. Langdon et al., pp. 11–18. Morgan Kaufmann, (2002).
6. L. Caldas, ‘Generation of energy-efficient architecture solutions applying gene arch: An evolution-based generative design system’, Advanced Engineering Informatics, 22(1), 59 – 70, (2008).
7. K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, 2001.
8. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 6, 182–197, (2002).
9. C. Diakaki, E. Grigoroudis, and D. Kolokotsa, ‘Towards a multiobjective optimization approach for improving energy efficiency in buildings’, Energy and Buildings, 40(9), 1747 – 1754, (2008).
10. F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. St¨utzle, ‘ParamILS: an automatic algorithm configuration framework’, Journal of Artificial Intelligence Research, 36(1), 267–306, (2009).