1.	Abhyankar, A., Copeland, L., & Wong, W. (1997). Uncovering Non-linear Structure in Real-time Stock Market Indexes: The S&P 500, the DAX, the Nikkei 225 and the FTSE-100. Journal of Business and Economic Statistics, 15(1), 1-14. 
2.	Akigray, V. (1989). Conditional Heteroskedasticity in Time Series of Stock Returns: Evidence and Forecasts. Journal of Business, 62(1), 55-80. 
3.	Alexander, L., & Leigh, C. (1997). Covariance Matrices Used in Value at Risk Models. Journal of Derivatives, 4(1), 50-62. 
4.	Amiri, S., Von Rosen, D., & Zwanzig, S. (2009). The SVM Approach for Box-Jenkins Models. REVSTAT Statisical Journal, 7(1), 23-36. 
5.	Anderson, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Makridakis, S., . . . Winkler, R. (1982). The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting Competition. Journal of Forecasting, 1(1), 111-153. 
6.	Antonakakis, N., & Scharler, J. (2012). Volatility, Information and Stock Market Crashes. Journal of Advanced Studies in Finance, 5(1), 49-67. 
7.	Anwar, S., & Mikami, Y. (2011). Comparing Accuracy Performance of ANN, MLR and GARCH Models in Predicting Time Deposit Return of Islamic Bank. International Journal of Trade Economics and Finance, 2(1), 44-51. 
8.	Araujo, M., & Mare, E. (2006). Examining the Volatility Skew in the South African Equity Market Using Risk-neutral Historical Distributions. Investments Analyst Journal, 64(1), 15-20. 
9.	Archibald, B., & Koehler, A. (2003). Normaliztion of Seasonal Factors in Winters Methods. International Journal of Forecasting, 19(1), 143-148. 
10.	Atiya, F., El-Sherif, S., El-Shoura, S., & Shaheen, S. (1999). A Comparison Between Neural-Network Forecasting Techniques - Case Study: River Flow Forecasting. IEEE Transactions on Neural Networks, 10(2), 402-409. 
11.	Bardina, J., & Rajkumar, T. (2003). Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients. AeroSense 2003: SOIE's 17th Annual International Symposium on Aerospace/Defense Simulation and Controls. 2. Orlando: NASA Technical Reports Server. 
12.	Bates, J., & Granger, W. (1969). The Combination of Forecasts. Operations Research Quarterly, 20(1), 541-468. 
13.	Beckers, S. (1981). Standard Deviations Implied in Option Prices as Predictors of Future Stock Price Variability. Journal of Banking Finance, 5(1), 363-381.
14.	Berk, J. (1995). A Critique of Size-Related Anomolies. Review of Financial Studies, 8(1), 275-286. 
15.	Bollerslev. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(1), 307-327. 
16.	Bollerslev, T., Chou, R., & Kroner, K. (1992). ARCH Modelling in Finance. Journal of Econometrics, 52(1), 307-327. 
17.	Boudoukh, J., Richardson, M., & Whitelaw, R. (1997). Investigation of a Class of Volatility Estimators. Journal of Derivatives, 4(1), 63-71. 
18.	Bowerman, B., & O'Connell, R. (1979). Time Series and Forecasting: An Applied Approach. New York: Duxbury Press. 
19.	Box, G., & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control (Vol. 1). San Francisco: Holden Day. 
20.	Boyd, M., & Kaastra, I. (1996). Designing a Neural Network for Forecasting Financial and Economic Time Series. Neurocomputing, 10, 215-236. 
21.	Brock, W., Dechert, J., Scheinkman, & LeBaron, B. (1996). A Test for Independence Based on the Correlation Dimension. Econometric Review, 15(1), 197-235. 
22.	Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. Journal of Finance, 41(1), 1731-1764. 
23.	Brownlees, C., Engle, R., & Kelly, B. (2012). A Practical Guide to Volatility Forecasting  Through Calm and Storm. The Journal of Risk, 14(2), 3-22. 
24.	Cancelliere, R., & Gemello, R. (1996). Efficient Training of Time Delay Neural Networks for Sequential Patterns. Neurocomputing, 10(1), 33-42. 
25.	Chen, A., Daouk, H., & Leung, M. (2000). Forecasting Stock Indices: A Comparisson of Classification and Level Estimation Models. International Journal of Forecasting, 16(1), 173-190. 
26.	Chiu, C., Lee, T., & Lu, C. (2009). Financial Time Series Forecasting Using Independent Component Analysis and Support Vector Regression. Decision Support Systems, 47(1), 115-125. 
27.	Clements, M., Franses, P., & Swanson, N. (2004). Forecasting Economic Time-series with Non-linear Models. International Journal of Forecasting, 20(1), 169-183. 
28.	Conrad, J., & KAul, G. (1988). Time Variation in Expected Returns. Journal of Business, 61(1), 409-425.
29.	Crone, S., & Kourentzes, N. (2008). Forecasting High Freqeuency Time Series with Neural Networks - An Analysis of Modeling Challenges from Increasing Data Frequency. International Conference on Data Mining, (pp. 37-42). Las Vegas. 
30.	Day, T., & Lewis, C. (1992). Stock Market Volatility and the Information Content of Stock Index Options. Journal of Economics, 52(1), 267-287. 
31.	De Gooijer, J., & Hyndman, R. (2006). 25 Years of Time Series Forecasting. International Journal of Forecasting , 22(1), 443-473. 
32.	Deboeck, G. (1994). Trading on the Edge: Neural, Genetic and Fuzy Systems for Chaotic Financial Markets. New York: Wiley & Sons. 
33.	DeBondt, W., & Thaler, R. (1985). Does the Stock Market Overreact? Journal of Finance, 40(1), 793-805. 
34.	Dickey, D., & Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(1), 427-431. 
35.	Dixit, G., Roy, D., & Uppal, N. (2013). Predicting India Volatility Index: An Application of Artificail Neural Network. International Journal of Computer Applications, 70(4), 22-30. 
36.	Dockner, E., Dorffner, G., & Schittenkopf, C. (2000). Forecasting Time-dependent Conditional Densities: A Semi-nonparametric neural network approach. Journal of Forecasting, 19(4), 355-374. 
37.	Granger, C., & Poon, S. (2003). Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, 41(1), 478-539. 
38.	Granger, C., & Poon, S. (2005). Practical Issues in Forecasting Volatility. Financial Analysts Journal, 61(1), 45-56. 
39.	Hu, M., Patuwo, E., & Zhang, G. (1998). Forecasting with Artificial Neural Networks: The State of the Art. 14(1), 35-62. 
40.	Marcellino, M. (2007). A Comparisson of Time Series Models for Forecasting GDP Growth and Inflation. Unpublished Thesis, European University Institute, Department of Economics, Milan. 
41.	Marucci, J. (2005). Forecasting Stock Market Volatility with Regime-Switching GARCH Models. Unpublished Thesis, University of California, Department of Economics, California. 
42.	Merton, R. (1980). On Estimating the Expected Return on the Market: An Exploratory Investigation. Journal of Financial Economics, 8(1), 323-361. 
43.	Miller, D., & Williams, D. (1999). Level-Adjusted Exponential Smoothing Modelling for Planned Discontinuities. International Journal of Forecasting, 15(1), 273-289. 
44.	Muth, J. (1960). Optimal Properties of Exponentially Weighted Forecasts. Journal of the American Statistical Association, 55(1), 299-306. 
45.	Nelson, C., & Plosser, C. (1982). Trends and Random Walks in Macroeconomic Time Series. Journal of Monetory Economics, 10(1), 139-162. 
46.	Nelson, D. (1992). Filtering and Forecasting with Misspecified ARCH Models I: Getting the Right Variance with the Wrong Model. Journal of Econometrics, 52(1), 61-90. 
47.	Pissarenko. (2002). Neural Networks for Financial Time Series Prediction: Overview Over Recent Research. Unpublished Thesis, Department of Computer Science. 
48.	Poon, S. (2008, August 11). Historical Volatility Models. Retrieved August 2, 2013, from https://phps.portals.mbs.ac.uk/Portals/49/docs/spoon/HisVol.pdf.pdf 
49.	Qi, Z., & Zhang, G. (2005). Neural Network Forecasting for Seasonal and Trend Time Series. European Journal of Operational Research, 160, 501-514. 
50.	Rapach, D., & Zhou, G. (2013). Forecasting Stock Returns. In G. Elliot, & A. Timmermann, Handbook of Economic Forecasting (Vol. 2, pp. 328-383). 
51.	Roberts, S. (1982). A General Class of Holt-Winters Type Forecasting Models. Management Science, 28(1), 808-820. 
52.	Roll, R. (1984). A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficeint Market. Journal of Finance, 39(1), 1127-1140. 
53.	Rozeff, P. (1984). Dividend Yields are Equtiy Premiums. Journal of Portfolio Management, 1(1), 68-75. 
54.	Sabbatini, M., & Linton, O. (1998). A GARCH Model of the Implied Volatility of the Swiss Market Index from Option Prices. International Journal of Forecasting, 14(1), 199-213.
55.	Saleemah, A. (2012). A Multilayer Perceptron for Predicting Shear Strength of Reinforced Concrete Beams. Journal of Civil Engineering and Construction Technology, 3(2), 64-79. 
56.	Samouilhan, N., & Shannon, G. (2008). Forecasting Volatility on the JSE. Investment Analysts Journal, 67(1), 18-28. 
57.	Satchell, S., & Timmermann, A. (1995). On the Optimality of Adaptive Expectations: Muth Revisited. International Journal of Forecasting, 11(3), 407-416. 
58.	Sharpe, W. (1964). Capital Asset Prices: A Theory of Market Equilibtrium Under Conditions of Risk. Journal of Finance, 19(1), 425-442. 
59.	Shumway, R., & Stoffer, D. (2011). Time Series Analysis and Its Applications With R Examples. New York: Springer Science+Business Media. 
60.	Stuart, H. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology, 18(4), 203-210. 
61.	Sullivan, R., Timmerman, A., & White, H. (1999). Data-Snooping, Technical Trading Rule Performance and the Bootstrap. Journal of Finance, 54(1), 1647-1691. 
62.	Taylor, S. (1987). Forecasting the Volatility of Currency Exchange Rates. Internatioanl Journal of Forecasting, 3(1), 159-170. 
63.	Thiel, H. (1966). Applied Economic Forecasting. Chicago: Rand McNally. 
64.	Tse, Y. (1991). Stock Reurn Volatility in the Tokyo Stock Market. Japan and the World Economy, 3(1), 285-298. 
65.	Tse, Y., & Tung, S. (1992). Forecasting Volatility in the Singapore Stock Market. Asia Pacific Journal of Management, 9(1), 1-13. 
66.	Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioural Sciences. Unpublished Thesis, Harvard University. 
67.	White, H. (2000). A Reality Check for Data Snooping. Econometrica, 68(5), 1097-1126. 
68.	Wilamowski, M., & Yu, H. (2011). Levenberg-Marquardt Training. The Industrial Electronics Handbook, 5, pp. 12-27. 
69.	Yule, G. (1927). On the Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer's Sunspot Nmbers. Philosophical Transactions of the Royal Society of London, 226, 267-298.
70.	Zhang, G. (2001). An Investigation of Neural Network for Linear Time-series Forecasting. European Computers and Operational Research, 28(12), 1183-1202.
71.	Trippi, R. and E. Turban (1993), eds., Neural Networks in Finance and Investing, Probus Publishing Company.
72.	Trippi, R. R. and D. Desieno (1992), "Trading equity index futures with a neural network", Journal of Portfolio Management, 19, 27-33.