( ISSN 2277 - 9809 (online) ISSN 2348 - 9359 (Print) ) New DOI : 10.32804/IRJMSH

Impact Factor* - 6.2311


**Need Help in Content editing, Data Analysis.

Research Gateway

Adv For Editing Content

   No of Download : 128    Submit Your Rating     Cite This   Download        Certificate

ONE POT SYNTHESIS OF IMIDAZOLE-TRIAZOLE FRAMEWORK VIA DIMORTH REARRANGEMENT AND CLICK REACTION.

    3 Author(s):  P.CHANTI BABU, R.S.K.SHARMA, B.JAYARAM

Vol -  4, Issue- 2 ,         Page(s) : 742 - 756  (2013 ) DOI : https://doi.org/10.32804/IRJMSH

Abstract

There are only a few approaches that describe the direct synthesis of 2- aminoimidazoles and their biological activity1-5. The earliest method involves condensation of α-aminocarbonyl compounds with cyanamide or their synthetic equivalents6, 7. This method is most commonly used for the direct construction of the 2-aminoimidazole ring. Other general applicable strategies are cyclocondensation of α-bromoketone with N-acetylguanidine in acetonitrile8, iminophosphorane-mediated cyclization of α –azido esters9, ammonolysis of 2-amino-1,3-oxazol-3-iumsalts10, sequential functionalization of 1,2-diprotected imidazole ring with different electrophiles11. Most of them involve long experimental procedures, the use of unstable precursors and tiresome workup process. Accordingly, the development of straightforward and general procedures for the synthesis of diversely substituted 2- aminoimidazoles from readily available precursors is highly warranted. Herein, we report a rapid and highly efficient Cu-mediated synthesis of 2-aminoimidazoletriazole framework via click reaction and dimorth rearrangement.

1. For a general review of the synthesis and activity of 2-aminoimidazole alkaloids, see: (a) S.M. Weinreb, (2007) Nat. Prod. Rep. 24, 931–948. (b) H. Hoffmann, T. Lindel, (2003) Synthesis. 1753–1783. (c) J. D. Sullivan, R. L. Giles, R. E. Looper. (2009) Curr. Bioactive Cmpds. 5, 39-78.
2. For the anti-biofilm activity of 2-aminoimidazoles, see: (a) R. W. Huigens III, J. J. Richards, G. Parise, T. E. Ballard, W. Zeng, R. Deora, C. Melander, (2007) J. Am. Chem. Soc. 129, 6966–6967. (b) S. A. Rogers, C.Melander, (2008) Angew. Chem. 120, 5307–5309., (2008) Angew. Chem. Int. Ed. 47, 5229–5231. (c) T. E. Ballard, J. J. Richards, A. L. Wolf, C.Melander, (2008) Chem. Eur. J. 14, 10745–10761.
(a) M. S. Malamas, J. Erdei, I. Gunawan, J. Turner, Y. Hu, E. Wagner, K. Fan, R.Chopra, A.Olland, J. Bard, S. Jacobsen, R. L. Magolda, M. Pangalos, A. J. Robi- chaud. (2010) J. Med.Chem. 53, 1146–1158. (b) M. S. Malamas, J. rdei, I. Gunawan, K. Barnes, M. Johnson, Y. Hui, J. Turner, Y.Hu, E. Wagner, K. Fan, A. Olland, J. Bard,A. J. Robichaud. (2009) J. Med.Chem. 52, 6314–6323.
(a) R. S. Coleman, E. L. Campbell, D. J. Carper. (2009) Org. Lett. 11, 2133–2136. (b) M.Nodwell, A. Pereira, J. L. Riffell, C. Zimmermann, B. O. Patrick, M. Roberge, R. J. Andersen.(2009) J. Org. Chem. 74, 995–1006.
(a) A. G. Beaman, W. Tautz, T. Gabriel, R. Duschinsky. (1966) J. Am. Chem. SOC. 87, 389. (b) G. C. Lancini, E. Lazzari, V. Arioli, P. Bellani. (1969) J. Med. Chem. 12, 775
(a) A. Lawson. (1956) J. Am. Chem. Soc. 307–310. (b) B. T. Storey, W. W. Sullivan, C. L.Moyer. (1964) J. Org. Chem. 29, 3118–3120. (c) G. C. Lencini,; E. Lazzari. (1966) J.Heterocycl. Chem. 3, 152–154.
(a) N. S. Aberle, L. Guillaume, K. G. Watson. (2006) Org. Lett. 8, 419–421. (b) N. Aberle, J.Catimel, E. C. Nice, K. G. Watson. (2007) Bioorg. Med. Chem. Lett. 17,3741–3744.
3. C. H. Soh, W. K. Chui, Y. Lam. (2008) J.Comb.Chem. 10,118.
4. P. Molina, P. Fresneda, M. Sanz. (1999) J. Org. Chem. 64, 2540–2544.
5. T. Moschny, H. Hartmann. (1999) Helv. Chim. Acta 82, 1981–1993.
6. S. Ohta, N. Tsuno, S. Nakamura, N. Taguchi, M. Yamashita, I. Kawasaki, M. Fujieda. (2000) Heterocycles. 53, 1939–1955.
(a) H. C. Kolb, M. G. Finn, K. B. Sharpless. (2001) Angew. Chem., Int. Ed. 40, 2004-2021. (b) H. C. Kolb, K. B. Sharpless. (2003) Drug Discovery Today. 8, 1128 1137. (c) C. W.Tornøe, C. Christensen, M. Meldal. (2002) J. Org. Chem., 67, 3057-3064.
(a) E. Lieber, T. S. Chao, C. N. R. Rao. (1963) Organic Syntheses. Coll. Vol. 4, 380., 1957.Vol. 37, 26. (b) El. Ashry, Y. El Kilany, N. Rashed, H. Assafir, (1999) Adv. Heterocycl.Chem. 75, 79. (c) D. J. Brown, Mechanisms of Molecular Migrations. Thyagarajan, B. S., (1968) Wiley-Interscience: New York, Vol. 1, 209.
7. For synthesis and anti biofilm activity see (a) D. S. Ermolat’ev, J. B. Bariwal, H. P. L.Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, (2010) Angew. Chem. Int. Ed.49, 9465–9468. (b) D. S. Ermolat'ev, E. V. Babaev, E. V. Van der Eycken. (2006) Org Lett. 8, 5781-5784. (c) D. S. Ermolat'ev, E. V. Van der Eycken. (2008) J. Org Chem. 73, 6691-6697. (d) D. S. Ermolat’ev, B. Savaliya, A. Shah, E. Van der Eycken. (2010) Molecular Diversity. DOI 10.1007/s11030-010-9270-5 (e) H. P. L. Steenackers, D. S. Ermolat’ev, B. Savaliya, A.De Weerdt, D. De Coster, A. Shah, E. V. Van der Eycken, D. E. De Vos, J. Vanderleyden, S.C.J. De Keersmaecker. (2010) J. Med Chem. DOI: 10.1021/jm 1011148.
8. For microwave-assisted procedure see: P. Appukkuttan, W. Dehaen, V. V. Fokin, E. Van der Eycken. Org. Lett., 2004, 6, 4223-4225. (b) For click chemistry under non-classical conditions see: C. O. Kappe, E. Van der Eycken. Chem. Soc. Rev., 2010, 39, 1280–1290, and references cited therein.
(a) D. Raut, K. Wankhede, V. Vaidya, S. Bhilare, N. Darwatkar, A. Deorukhkar, G. Trivedi, M. Salunkhe. (2009) Catalysis Communications. 10 1240–1243. (b) A. Sarkar, T. Mukherjee, S. Kapoor. (2008) J. Phys. Chem. C 112, 3334 3340.

*Contents are provided by Authors of articles. Please contact us if you having any query.






Bank Details